A comparison of robot-assisted and fluoroscopy-assisted kyphoplasty in the treatment of multi-segmental osteoporotic vertebral compression fractures
-
Graphical Abstract
-
Abstract
Osteoporotic vertebral compression fracture (OVCF) has become a major public health issue that becomes more pressing with increasing global aging. Percutaneous kyphoplasty (PKP) is an effective treatment for OVCF. Robot-assisted PKP has been utilized in recent years to improve accuracy and reduce complications. However, the effectiveness of robot-assisted PKP in the treatment of multi-segmental OVCF has yet to be proved. This study was designed to compare the efficacy of robot-assisted and conventional fluoroscopy-assisted multi-segmental PKP. A total of 30 cases with multi-segmental OVCF between April 2019 and April 2021 were included in this study. Fifteen cases were assigned to the robot-assisted PKP group (robot group) and 15 cases to the conventional fluoroscopy-assisted PKP group (conventional fluoroscopy group). The number of fluoroscopic exposures, fluoroscopic dose, operation time, cement leakage rate, visual analog scale (VAS) score, vertebral kyphosis angle (VKA), and height of fractured vertebral body (HFV) were compared between the 2 groups. The number of fluoroscopic exposures, fluoroscopic doses, and cement leakage rates in the robot group were lower than in the conventional fluoroscopy group (P<0.05) while the operative time in the robot group was longer than in the conventional fluoroscopy group (P<0.05). VAS score and VKA were decreased and HFV was increased after surgery in both groups (P<0.05). Therefore, robot-assisted PKP for the treatment of multi-segmental OVCF can reduce the number of fluoroscopic exposures, fluoroscopic doses, and cement leakage compared to conventional treatment. As such, robot-assisted PKP has good application prospects and is potentially more effective in the treatment of multi-segmental OVCF.
-
-