4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 30 Issue 2
Feb.  2016
Turn off MathJax
Article Contents
Rajesh Deshmukh, Lata Sharma, Muktika Tekade, Prashant Kesharwani, Piyush Trivedi, Rakesh K. Tekade. Force degradation behavior of glucocorticoid deflazacort by UPLC: isolation, identification and characterization of degradant by FTIR, NMR and mass analysis[J]. The Journal of Biomedical Research, 2016, 30(2): 149-161. DOI: 10.7555/JBR.30.20150074
Citation: Rajesh Deshmukh, Lata Sharma, Muktika Tekade, Prashant Kesharwani, Piyush Trivedi, Rakesh K. Tekade. Force degradation behavior of glucocorticoid deflazacort by UPLC: isolation, identification and characterization of degradant by FTIR, NMR and mass analysis[J]. The Journal of Biomedical Research, 2016, 30(2): 149-161. DOI: 10.7555/JBR.30.20150074

Force degradation behavior of glucocorticoid deflazacort by UPLC: isolation, identification and characterization of degradant by FTIR, NMR and mass analysis

More Information
  • Received Date: May 09, 2015
  • Revised Date: May 09, 2015
  • In this investigation, sensitive and reproducible methods are described for quantitative determination of deflazacort in the presence of its degradation product. The method was based on high performance liquid chromatography of the drug from its degradation product on reverse phase using Acquity UPLC BEH C18 columns (1.7 μm, 2.1 mm × 150 mm) using acetonitrile and water (40:60 V/V) at a flow rate of 0.2 mL/minute in UPLC. UV detection was performed at 240.1 nm. Deflazacort was subjected to oxidative, acid, base, hydrolytic,thermal and photolytic degradation. The drug was found to be stable in water and thermal stress, as well as under neutral stress conditions. However, forced-degradation study performed on deflazacort showed that the drug degraded under alkaline, acid and photolytic stress. The degradation products were well resolved from the main peak, which proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to accuracy, linearity, limit of detection, limit of quantification, accuracy, precision and robustness, selectivity and specificity. Apart from the aforementioned, the results of the present study also emphasize the importance of isolation characterization and identification of degradant. Hence, an attempt was made to identify the degradants in deflazacort. One of the degradation products of deflazacort was isolated and identified by the FTIR, NMR and LC-MS study.
  • Cited by

    Periodical cited type(1)

    1. Tazesh S, Tamizi E, Siahi Shadbad M, et al. Comparative Stability of Two Anti-hyperpigmentation Agents: Kojic Acid as a Natural Metabolite and Its Di-Palmitate Ester, Under Oxidative Stress; Application to Pharmaceutical Formulation Design. Adv Pharm Bull, 2022, 12(2): 329-335. DOI:10.34172/apb.2022.031

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3451) PDF downloads (625) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return