4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Volume 31 Issue 1
Dec.  2016
Turn off MathJax
Article Contents
Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051
Citation: Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051

Animal models of coronary heart disease

More Information
  • Received Date: May 25, 2015
  • Revised Date: June 15, 2015
  • Cardiovascular disease, predominantly coronary heart disease and stroke, leads to high morbidity and mortality not only in developed worlds but also in underdeveloped regions. The dominant pathologic foundation for cardiovascular disease is atherosclerosis and, as to coronary heart disease, coronary atherosclerosis and resulting lumen stenosis, even total occlusions. In translational research, several animals, such as mice, rabbits and pigs, have been used as disease models of human atherosclerosis and related cardiovascular disorders. However, coronary lesions are either naturally rare or hard to be fast induced in these models, hence, coronary heart disease induction mostly relies on surgical or pharmaceutical interventions with no or limited primary coronary lesions, thus unrepresentative of human coronary heart disease progression and pathology. In this review, we describe the progress of animal models of coronary heart disease following either spontaneous or diet accelerated coronary lesions.
  • Cited by

    Periodical cited type(18)

    1. Yang CH, Ho YH, Tang HY, et al. NMR-Based Analysis of Plasma Lipoprotein Subclass and Lipid Composition Demonstrate the Different Dietary Effects in ApoE-Deficient Mice. Molecules, 2024, 29(5): 988. DOI:10.3390/molecules29050988
    2. Whitehead AJ, Atcha H, Hocker JD, et al. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci, 2023, 136(23): jcs261152. DOI:10.1242/jcs.261152
    3. Tang MM, Zhao ST, Li RQ, et al. Therapeutic mechanisms of ginseng in coronary heart disease. Front Pharmacol, 2023, 14: 1271029. DOI:10.3389/fphar.2023.1271029
    4. Yang Y, Feng K, Yuan L, et al. Compound Danshen Dripping Pill inhibits hypercholesterolemia/atherosclerosis-induced heart failure in ApoE and LDLR dual deficient mice via multiple mechanisms. Acta Pharm Sin B, 2023, 13(3): 1036-1052. DOI:10.1016/j.apsb.2022.11.012
    5. Puteri MU, Azmi NU, Ridwan S, et al. Recent Update on PCSK9 and Platelet Activation Experimental Research Methods: In Vitro and In Vivo Studies. J Cardiovasc Dev Dis, 2022, 9(8): 258. DOI:10.3390/jcdd9080258
    6. Bai J, Lin QY, An X, et al. Low-Dose Gallic Acid Administration Does Not Improve Diet-Induced Metabolic Disorders and Atherosclerosis in Apoe Knockout Mice. J Immunol Res, 2022, 2022: 7909971. DOI:10.1155/2022/7909971
    7. Liao J, Bai J, An X, et al. Lipoprotein Glomerulopathy-Like Lesions in Atherosclerotic Mice Defected With HDL Receptor SR-B1. Front Cardiovasc Med, 2021, 8: 734824. DOI:10.3389/fcvm.2021.734824
    8. Cernica D, Benedek I, Polexa S, et al. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel), 2021, 11(9): 910. DOI:10.3390/life11090910
    9. Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Sci Adv, 2020, 6(26): eabb5067. DOI:10.1126/sciadv.abb5067
    10. Colbert CM, Shao J, Hollowed JJ, et al. 3D-Printed Coronary Implants Are Effective for Percutaneous Creation of Swine Models with Focal Coronary Stenosis. J Cardiovasc Transl Res, 2020, 13(6): 1033-1043. DOI:10.1007/s12265-020-10018-3
    11. Hollowed JJ, Colbert CM, Currier JW, et al. Novel Percutaneous Approach for Deployment of 3D Printed Coronary Stenosis Implants in Swine Models of Ischemic Heart Disease. J Vis Exp, 2020. DOI:10.3791/60729
    12. Bikou O, Tharakan S, Yamada KP, et al. A Novel Large Animal Model of Thrombogenic Coronary Microembolization. Front Cardiovasc Med, 2019, 6: 157. DOI:10.3389/fcvm.2019.00157
    13. Gwon SY, Lee HM, Rhee KJ, et al. Microarray and proteome array in an atherosclerosis mouse model for identification of biomarkers in whole blood. Int J Med Sci, 2019, 16(6): 882-892. DOI:10.7150/ijms.30082
    14. Liu H, Xiong W, Liu F, et al. Significant role and mechanism of microRNA-143-3p/KLLN axis in the development of coronary heart disease. Am J Transl Res, 2019, 11(6): 3610-3619.
    15. Savoji H, Mohammadi MH, Rafatian N, et al. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019, 198: 3-26. DOI:10.1016/j.biomaterials.2018.09.036
    16. Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials, 2019, 196: 2-17. DOI:10.1016/j.biomaterials.2018.07.029
    17. Soler A, Hunter I, Joseph G, et al. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol, 2018, 117: 88-99. DOI:10.1016/j.yjmcc.2018.02.005
    18. Gao M, Xin G, Qiu X, et al. Establishment of a rat model with diet-induced coronary atherosclerosis. J Biomed Res, 2016, 31(1): 47-55. DOI:10.7555/JBR.31.20160020

    Other cited types(0)

Catalog

    Article Metrics

    Article views (4136) PDF downloads (594) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return